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Modern and Glacial-Holocene Carbonate Sedimentation 
in Bear Lake, Utah-Idaho

By Walter Dean, Richard Forester, Steve Colman, An Liu, Gary Skipp, Kathleen Simmons, Peter Swarzenski, 
and Roger Anderson

Introduction

The Bear Lake Valley in northeastern Utah and adjacent 
Idaho (fig. 1) is a half graben containing a mesosaline-alkaline 
lake (Bear Lake). The lake is 32 km long and 6–13 km wide 
with an area of 280 km2 at full capacity. Maximum depth is 
63 m, with a mean depth of 28 m (Birdsey, 1989). The present 
elevation of the lake is 1805 meters above sea level (masl), but 
this level has varied considerably through time. The natural 
watershed of the lake is relatively small, with a basin-area:
lake-area ratio of only 4.8:1 (Wurtsbaugh and Luecke, 1997). 
Historically, the Bear River did not flow into Bear Lake. A 
series of canals, built from 1909 to 1918 (Birdsey, 1989), now 
diverts the Bear River into Bear Lake creating a reservoir to 
supply irrigation water downstream. This increased the basin-
area:lake-area ratio considerably to 29.5:1. The mean annual 
surface hydrologic flux (including precipitation) to the lake 
is 0.48 * 109 m3/yr (Lamarra and others, 1986), which is only 
about 6 percent of the lake volume (7.86 * 109 m3), giving an 
average residence time of about 16 years. The magnitude of 
ground water influx is not known.

Kullenberg piston coring in 1996 and seismic profiling 
in 1997 and 2002 (fig. 1) reveal a layered sediment package 
with clear wedging reflectors and erosional unconformities 
(fig. 2). The piston cores recovered highly resolved records 
with excellent definition of geochemical-climate proxies and 
low-sedimentation rates. They are only a maximum of 5 m in 
length but provide a 30,000-year record, well beyond the last 
glacial maximum.  Some unknown amount of sediment was 
missing from the tops of the piston cores so surface sediments 
(up to 50 cm) were collected with a gravity corer (1998; fig. 
1). The Holocene sediments are carbonate-rich (predominantly 
aragonite), and the glacial-age sediments consist of calcareous 
silty clays, probably indicating direct inflow of Bear River into 
Bear Lake.

The seismic stratigraphy below the lake (fig. 2) indicates 
that the principal structure is a half graben, with a steep nor-
mal-fault margin on the east and a ramp margin on the west. 
Seismic reflections diverge toward the master fault, bound-
ing eastward thickening sediment wedges. Secondary normal 
faults west of the master fault were imaged beneath the lake, 
and many of these faults show progressively increasing throw 

with depth and age. Several faults cut the youngest sediments 
in the lake as well as the modern lake floor. Although pinch-
outs of sedimentary units are common in relatively shallow 
water, no major erosional or depositional features suggestive 
of shoreline processes were observed on seismic profiles in 
water deeper than about 5 m.
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Figure 1. Bathymetric map of Bear Lake Utah/Idaho, showing 
the locations of 1996 piston cores (96-1, -2, -3), 1997 seismic lines, 
and 1998 surface-sediment cores (98-04, -06, -09, -10, -12, -13) and 
sediment-trap deployments 1, 2, 3).  Inset shows the location of 
Bear Lake relative to Bear River and Great Salt Lake.



Water Chemistry

Samples of water from Bear Lake and streams and 
springs around the lake were collected in September 1999 
(fig.3). Major and trace elements in these samples were 
measured by inductively coupled argon-plasma emission 
spectrometry (ICP) at the University of Minnesota. Values of 
87Sr/ 86Sr were measured by mass spectrometry at the Isotope 
Geochemistry Laboratories of the U.S. Geological Survey 
(USGS) in Denver, Colorado. Additional samples of water 
from Bear Lake and streams and springs around the lake were 
collected in August 2000 (fig. 3). Major and trace elements in 
these samples were measured by ICP at the USGS National 
Water Quality Laboratory in Denver. Values of 87Sr/86Sr were 
measured by mass spectrometry at the Isotope Geochemistry 
Laboratories of the USGS in Denver, Colorado.

The dominant cations in Bear Lake water today are 
calcium (Ca), magnesium (Mg,) and sodium (Na) (Appendix 
1). The dominant anion is bicarbonate, but with relatively high 
concentrations of sulfate (SO

4
) and chloride (Cl) (Appendix 

1). A cross plot of Mg concentration versus Ca concentration 
(fig. 4) shows that Bear Lake is highly enriched in Mg rela-
tive to Bear River. As seen on Figure 4, the chemistry of the 
outflow from Bear Lake can be explained by a simple mixture 
of Bear Lake and Bear River waters.

The concentration of Mg in Bear Lake was much greater 
prior to the diversion of Bear River into Bear Lake between 
1909 and 1918 (Appendix 1, fig. 4), and the net effect of the 
diversion was to dilute Bear Lake water. Figure 4 shows the 
progression of dilution over the past 90 years. The Mg:Ca ratio 
in the Bear Lake water sample collected in 1912 (Kemmerer 
and others, 1923) was 38:1; today it is about 1.7:1 (Appendix 

1). There must be a large Mg-rich ground-water source from 
a deep aquifer because shallow ground waters, as sampled in 
springs and wells around the lake, have compositions similar 
to surface waters. 

The Sr-isotope story of Bear Lake and associated waters 
is somewhat different. Figure 5 shows that the outflow from 
Bear Lake can be explained by a mixture of Bear Lake water 
with a low Sr concentration and Bear River water with a high 
Sr oncentration, but the isotopic composition of Sr in the two 
waters is not greatly different. This indicates that the suspected 
Mg-enriched ground-water source has a low Sr concentration. 
Other potential sources of Sr-depleted water are the west-side 
creeks (fig. 5), although they are extremely enriched in 87Sr 
relative to the lake and east-side streams, including Bear River.

Analytical Methods for Sediments
Concentrations of total carbon (TC) and inorganic carbon 

(IC) in splits of the XRD samples were determined by coulo-
metric titration of CO

2
 following extraction from the sedi-

mentby combustion at 950˚C and acid volatilization, respec-
tively (Engleman and others, 1985), in USGS laboratories, 
Denver, Colorado. Weight percent IC was converted to weight 
percent CaCO

3
 by dividing by 0.12, the fraction of carbon in 

CaCO
3
. Organic carbon (OC) was determined by difference 

between TC and IC. Results of analyses of samples from sur-
face gravity cores are given in Appendix 3, and those from the 
longer piston cores are given in Appendix 7.1. and 7.2.

Semiquantitative estimates of mineral contents of pow-
dered bulk samples were determined by standard X-ray dif-
fraction (XRD) techniques (for example, Moore and Reynolds, 
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Figure 2. Chirp seismic profile collected in 2002 across Bear Lake from Garden City, Utah showing the locations of 1996 piston cores.  
Two-way travel time is in milliseconds.  The location of the chirp line is approximately the same as the1997 acoustic-reflection line west 
of Garden City, Utah in Figure 1 showing the locations of the three cores.
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1989) in USGS laboratories, Denver, Colorado. Each sample 
was packed into an aluminum holder and scanned from 15° to 
50° 2Θ at 2° 2Θ/min using Ni-filtered, Cu-Ka radiation at 45 
kv, 30 ma. Raw XRD peak intensities, in counts per second, 
for the main peaks of minerals detected in each sample were 
converted to semiquantitative percentages by dividing the 
main peak intensity of a mineral by the sum of the main peak 

intensities of all minerals for that particular sample. These 
percentage calculations should be used with caution, because 
they do not reflect the different X-ray mass absorption charac-
teristics of different minerals. Results of these calculations for 
samples from surface gravity cores are given in Appendix 4, 
and those from the longer piston cores are given in Appendix 
8.1, 8.2., and 8.3.
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Figure 3. Map of Bear Lake and surrounding drainages showing the water samples collected in 1999 (letters) 
and 2000 (numbers).  Analyses of these samples are given in Table 1.
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Samples for measurement of ratios of stable isotopes 
of carbon and oxygen were collected from each core at 5 cm 
intervals, and treated with 0.25 percent Calgon for 2 hr to dis-
aggregate the sediment. The samples then were sieved through 
a 60 µm sieve into 50 mL centrifuge tubes. About 15 mL 
commercial bleaching liquid (a 5 percent solution of sodium-
hyperchlorite) was added to oxidize organic material for 24 
hours. The mixture then was centrifuged for about 5 minutes. 
The liquid was decanted and the residue saved. The residue 
from each sample was freeze-dried and ground to a powder. 
Based on carbonate content, a calculated amount of sample, 
containing about 10 mg of calcium carbonate, was reacted 
with 100 percent phosphoric acid at 75±1°C. Evolved gases 
were cryogenically purified to remove water and nonconden-
sible gases.  The purified CO

2
 was introduced into a Finnigan 

MAT delta E mass spectrometer through a capillary, and 
isotopic ratios of carbon and oxygen were measured against a 
reference standard of known isotopic composition. Results of 
analyses are reported in the usual per mil (‰) δ−notation rela-
tive to the Vienna Pee Dee Belemnite (VPDB) marine-carbon-
ate standard for carbon and oxygen:

δ‰=[(Rsample/RVPDB)-1]x103 (where R is the ratio 
13C:12C or 18O:16O).

Results of analyses of samples from surface gravity cores 
are given in Appendix 5, and those from the longer piston 
cores are given in Appendix 9.1., 9.2., and 9.3.

Samples for measurement of strontium isotope ratios 
were leached in 5 molar acetic acid. The leachate was centri-
fuged and purified with conventional ion-exchange methods. 
Samples were loaded on a single tantalum filament with 
phosphoric acid. Isotope ratios were measured with an auto-
mated VG54 sector multicollector, thermal-ionization mass 
spectrometer in dynamic mode. Mass dependent fraction-
ation was corrected assuming a 86Sr/87Sr of 0.1194. Strontium 
isotope ratios are reported relative to SRM-987 standard value 
of 0.71025. Values of 86Sr/87Sr ratios in samples from surface 
gravity core 98-10 are given in Appendix 6, and those from 
piston core 96-2 are given in Appendix 10.

Sediment Traps

Time-marking sediment traps that dispense teflon gran-
ules in the collection tube every 30 days (Anderson, 1977, 
figure 6) were suspended at 10 m below the surface of the 
lake (surface trap) and 2 m above the bottom of the lake (bot-
tom trap) at three different localities (fig. 1), in up to 40 m of 
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Figure 5. Cross plot of concentration of Sr and the 87Sr/86Sr ratio in Bear Lake and associated waters.  All 
values are from Table 1.

water for a period of three years. Summer carbonate sediment 
collected in all surface traps consists of almost pure high-Mg 
calcite (ca. 10 mole % Mg) (figs. 7 and 8). Summer sedi-
ment collected in bottom traps typically consists of aragonite 
or calcite as the dominant mineral, with varying amounts of 
quartz and minor dolomite (Appendix 2). Aragonite usu-
ally was the dominant mineral in sediments collected in the 
bottom trap at the deepest, basin-center site (site 2, Figs. 1 
and 7), whereas calcite usually was the dominant mineral in 
sediments collected in the bottom trap at the shallowest site at 
the north end of the lake (site 3, Figs. 1 and 8). The aragonite 
occurs as needle-shaped crystals about 5 µm long and <1 µm 
in diameter. The calcite occurs as equant, rounded rhombohe-
dral grains about 4–5 µm in diameter. A surprising observa-
tion, however, was that calcite in the bottom traps consisted 

of varying proportions of high-Mg calcite and low-Mg calcite 
(figs. 7 and 8). This suggests that the high-Mg calcite precipi-
tated in surface waters is being transformed to low-Mg calcite 
as it falls through the water column. This transformation from 
high-Mg calcite to low-Mg calcite continues in the surface 
sediments, and high-Mg calcite is gone by about 10 cm below 
lake floor (cmblf).

HCl-leach-chemistry, strontium-isotope, and carbon- and 
oxygen-isotope techniques were applied to samples of bulk 
sediment from the traps to see if these data revealed any differ-
ences that might help to explain the differences in mineralogy 
between surface and bottom traps. The leach-chemistry results 
(Bischoff and others, 2005) are consistent with the mineralogy. 
The high-Mg calcite-rich sediments in the surface traps con-
tain about twice as much Mg as the aragonite-rich sediments 
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of the bottom traps, whereas the sediments in the bottom traps 
contain about twice as much Sr and are slightly enriched in Ba 
(figs. 7 and 8). 

Values of 87Sr/86Sr in bulk carbonate (Appendix 2) in 
sediments in surface traps are close to those for Bear Lake 
water (0.7092, Appendix 1). Values of 87Sr/86Sr in sediments in 
bottom traps are slightly higher (0.7093–0.7094) close to those 
for surface sediments. 

Values of δ 18O and δ 13C in bulk-sediment samples 
(Appendix 2) show a distinct evolutionary trend of enrich-
ment in both 18O and 13C going from surface traps to bottom 
traps (fig. 9). This trend parallels the evolutionary mineralogi-
cal trend of high-Mg calcite in surface traps to aragonite plus 
mixed calcite in bottom traps discussed above.

Surface Sediments
Cores of surface sediment (up to 50 cm) were collected 

with a gravity corer in 1998 (fig. 1) from the sites of two of 
the three piston cores that were collected in 1996 (sites 1 and 
2, fig. 1). In addition, surface-sediment cores were collected 
from the north end of the lake (site 3, fig. 1), where we had 
no piston core, in order to better assess changes in sediment 
composition following the diversion of Bear River into Bear 
Lake over the period 1909–1918. Four parallel cores were 
taken at each of the three locations. One core from each site, 
usually the longest (cores 98-06, 98-10, and 98-12, fig. 1), was 
extruded from the clear plastic liner at 1-cm intervals into petri 
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Figure 6. Cross section of a time-marking sediment trap of the design by 
Anderson (1977).
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dishes. The 1-cm slices were sent to USGS laboratories in St. 
Petersburg, Florida, for 210Pb dating. Aliquots of the remain-
ing sediment from each 1-cm interval were sent to USGS labo-
ratories in Denver, Colorado, for analyses of carbons, XRD 
mineralogy, and strontium-isotopes, and to USGS laboratories 
in Menlo Park, California, for HCl-leach chemistry (Bischoff 
and others, 2005). The second core went to the USGS labora-
tories in Salt Lake City, Utah, for analyses of contaminants. 
The third core went to Dr. Katrina Mosier, University of Utah, 
for analyses of diatoms. The fourth core went to Dr. Darrell 
Kaufman, University of Northern Arizona, for analyses of 
ostracodes and amino-acid dating. Aliquots of sediments from 
the ostracode cores (98-06, 98-09, and 98-13, fig. 1) were sent 
to the Limnological Research Center, University of Minnesota, 
for analyses of carbons and carbon and oxygen isotopes.

Mineralogy

One of the main reasons for obtaining an undisturbed 
record of surface sediments was to see how the sediment 
record responded to a major change in water chemistry that 
occurred when the Bear River was diverted into Bear Lake in 
the early part of the 20th century. Prior to diversion, there is 
no historical record of the Bear River ever entering Bear Lake 
naturally. Not much is known about the water chemistry of 
Bear Lake prior to diversion, but an analysis of water collected 
in 1912 (Kemmerer and others, 1923) showed concentrations 
of total dissolved solids (TDS), Mg, and Ca of 1060, 152, and 
4.1 mg/L, respectively (Appendix 1). Corresponding values 
in Bear Lake today are 500, 53, and 31, respectively. In other 
words, the salinity of the lake is about half of what it was in 
1912, and the Mg/Ca ratio has gone from 37 to 1.7. Surely, 
such changes should have had a large effect on carbonate 
minerals precipitating in the lake and the chemistry of those 
minerals.

Analyses of cores of surface sediments (30–50 cm), 
dated by 210Pb, from the same three localities in the lake as 
the sediment traps indicate that changes in carbonate mineral-
ogy and chemistry were not always as profound as we would 
have expected. There is little difference in the percentages 
of total CaCO

3
 content before and after diversion (Appendix 

3, fig. 10). The percentages of CaCO
3
 and OC in sediments 

decreased somewhat after diversion, but the most pronounced 
changes were the marked increases in mass accumulation rates 
(MAR, fig. 10) of all components due to a large increase in 
bulk-sediment MAR following diversion. In two of the three 
cores (BL-98-06 and BL98-12, fig. 11), the aragonite contents, 
relative to those of calcite, actually increases after diversion. 
Dolomite is a persistent but minor component, and quartz is a 
major component, in all three cores (Appendix 4, fig. 11).

Isotope geochemistry

The most abrupt pre-/post-diversion changes appear in 
the isotopic composition of bulk carbonate (fig. 12). Values of 
δ 18O, δ 13C, and 87Sr/86Sr in bulk carbonate decrease abruptly 

and markedly in post-diversion sediments (Appendix 5, fig. 
12) reflecting the more 18O-, 13C-, and 87Sr-depleted waters 
of Bear River. Sediments deposited prior to diversion have 
values of δ 18O of about -4‰, whereas the carbonates that 
precipitated in the less saline waters of the lake after diversion 
have values of δ 18O of -7 to -7.5‰, slightly more enriched 
in 18O than in sediments from bottom traps (fig. 7). Values δ 
13C in prediversion sediments are 2.5 to 3‰, whereas those of 
post-diversion sediments are <1‰ (fig. 12). 

Values of 87Sr/86Sr in carbonates deposited before diver-
sion are around 0.7102 (Appendix 5; fig. 12), similar to values 
in stream and spring waters today on the west side of the lake 
(fig. 5). Values of 87Sr/86Sr in carbonates deposited in the lake 
after diversion are around 0.7094, similar to those of Bear 
Lake water today, but higher than those of Bear River (ca. 
0.7088; fig. 5). The results for pre- and post-diversion sedi-
ments in core BL98-10 (fig. 12) suggest that the pre-diver-
sion Bear Lake had a higher Mg concentration but a lower Sr 
concentration, and the Sr was enriched in 87Sr.

Glacial to Holocene Changes in 
Sedimentation

Kullenberg piston cores collected in 1996 were only 
able to penetrate up to 5 m, but this was sufficient to collect 
sediments deposited over the last 30,000 years, well beyond 
the last glacial interval (LGI, 24,000 to 10,000 years B.P.). 
The radiocarbon chronologies for these cores are described in 
Colman and others (2005). As seen on figure 2, the sedimen-
tary sequence in Bear Lake consists of a series of eastward 
dipping strata, the shallowest of which pinch out to the west. 
Therefore, the three cores that we collected (96-1, 96-2, and 
96-3, fig. 1) contain overlapping sequences. This can be seen 
in the profiles of calcite and aragonite versus depth shown in 
Figure 13. The aragonite-dominated sediment deposited over 
the last 7000 years is present in 500 cm of section in core 98-1 
and in 170 cm of section in core 96-2. Apparently the bottom 
of 96-1 just missed the top of the calcite-dominated sequence 
that occurs at 170–200 cm in 96-2. Most of the Holocene sec-
tion is missing from the top of 96-3. Core 96-2 contains all of 
the lithologic units deposited over the last 26,000 cal yr BP in 
Bear Lake.

Mineralogy

The sediments consist predominantly of aragonite, 
calcite, dolomite, and quartz. Percentages of these minerals 
calculated from XRD peak heights (Appendix 8.1., 8.2., and 
8.3.) are plotted versus depth on figure 14. The data for core 
96-3 (fig. 14) show that the carbonate-poor section deposited 
during the LGI (below 40 cm) consists of about 60-80 percent 
quartz, 10-20 percent calcite, and minor feldspar and dolo-
mite. The quartz and feldspar are detrital brought in by the 
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Bear River during the LGI when the river was connected to 
Bear Lake. Some, or perhaps all, of the calcite and dolomite 
also might be detrital, but we have no way of knowing how 
much. These LGI sediments consist of red silty clay that are in 
marked contrast to the light-tan carbonate-rich Holocene sedi-
ments, regardless of mineralogy.

The carbonate-rich sediments deposited since 14,000 14C 
yr BP exhibit several abrupt changes in mineralogy (calcite 
and aragonite, fig. 13, core 96-2). These changes in mineral-
ogy are not always reflected in the overall percent CaCO

3
 (fig. 

14). The percentage of CaCO
3
 began to increase at about 320 

cm (fig. 15, core 96-2, ca. 17,000 cal yr BP), reached a plateau 

of about 40 percent between 300 and 250 cm, then increased 
to about 70 percent by 240 cm (ca 12,000 cal yr BP) where 
it remained throughout the Holocene and through changes in 
mineralogy. This suggests that there was a mass balance of 
total CaCO

3
 that was maintained through changes in miner-

alogy, which presumably reflect changes in environmental 
conditions. 

The amount of OC that was buried in Bear Lake sedi-
ments began to increase at about 340 cm (fig. 15, core 96-2; 
ca, 20,000 cal yr BP), reached a plateau of about 1.5–2 
percent at about 310 cm (ca, 16,000 cal yr BP), and then 
decreased slightly throughout the Holocene. This suggests 
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that perhaps the increase in carbonate precipitation was trig-
gered by increased primary production with a related increase 
in pH of the surface waters. 

Isotope Geochemistry
Based on the strontium isotopic composition of waters 

(fig. 5), we showed that the outflow from Bear Lake can be 
explained by simple mixing of Bear Lake and Bear River 
waters. Similarly, the strontium isotopic composition of 20th 
century carbonates in Bear Lake sediments can be explained 
by simple mixing of Bear River water with some prediversion 
lake water with an isotopic composition defined by prediver-
sion, late Holocene carbonate (fig. 12). Therefore, if Bear 
River entered Bear Lake in the past, the carbon, oxygen, and 
strontium isotopic composition of carbonates should, as a 
first approximation, provide evidence of such an event. In 
particular, the very low values of 87Sr/86Sr in Bear River water 
(Appendix 1, fig. 5) should be an excellent tracer (Bouchard 
and others, 1998). For Bear Lake without Bear River, the 
hydrology of the lake can be assumed, as a first approxima-
tion, to be the main control on isotopic composition. The 
balance between precipitation and evaporation is one, and 
perhaps the largest hydrologic factor, but, as discussed earlier, 

there is an unknown Ca-rich, Mg-rich ground-water source 
that may have varied considerably with time. 

Values of δ 18O in calcite in the red, quartz-rich LGI 
sediments are lower (-9‰, fig. 16; core 96-2) than carbonate 
that accumulated in Bear Lake since the Bear River diver-
sion (-8‰, fig. 12). This is because during the LGI the lake 
contained a much larger proportion of 18O-depleted Bear River 
water so any endogenic carbonate would be 18O-depleted, 
and detrital carbonate from Paleozoic carbonate rocks also is 
18O-depleted. Increases in values of δ 18O and δ 13C between 
20 and 18 cal. ka could be due to a decrease in the flow of 
Bear River into the lake or an increase in evaporation. There 
is no decrease in the accumulation rate of red clay during this 
interval to suggest decreased river flow, so increased evapora-
tion seems more likely. Values of δ 13C increased steadily into 
the Holocene, likely due to increased burial of 13C-depleted 
OC as indicated by the rapid increase in percent OC (fig. 15). 
Between 320 and 300 cm, values of δ 18O declined to -11‰, 
the lowest values in the entire glacial-Holocene sequence (fig. 
16, core 96-2). These lower values might be due to greater 
influx of Bear River water, but there is no corresponding 
decrease in values of 87Sr/86Sr (fig. 16, core 96-2). Therefore, 
these low values are most likely due to warming water tem-
peratures at the end of the LGI. 
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At about 250 cm (ca, 12,000 cal yr BP), values of both δ 
18O and δ 13C, but especially δ 18O, began to increase rapidly 
(fig. 16, core 96-2), most likely due to increased evaporation. 
Between 250 and 220 cm, values of δ 18O increase by 6‰, 
from -11‰ to -5‰. Values of 87Sr/86Sr also increased dur-
ing this interval (ca 12,000 to 10,000 cal yr BP) (fig. 16). By 
10,000 cal yr BP (220 cm in core 96-2), the mineralogy and 
isotopic composition of bulk carbonate was approaching values 
that would be typical of most of the Holocene (Figs. 14 and 16, 
core 96-2).

At a depth of about 205 cm (ca, 8,500 cal yr BP), there 
must have been a remarkable decrease in salinity because 

formation of aragonite began to decrease, being replaced by 
formation of calcite (fig. 14, core 96-2). Values of δ 18O, δ 13C, 
and 87Sr/86Sr decreased at this time (fig. 16) suggesting that Bear 
River water again was entering Bear Lake. The lower salinity 
event lasted about 1500 years, and by 7,000 cal yr BP, aragonite 
was again forming, and values of δ 18O, δ 13C, and 87Sr/86Sr of 
carbonate were increasing (ca. 170 cm in core 96-2; figs. 14 
and 16). The mineralogy of carbonate in Bear Lake sediments 
has been relatively constant for the last 7,000 yr (fig. 14), but 
values of δ 18O and δ 13C continued to increase slightly (fig. 16), 
suggesting that perhaps salinity continued to increase after Bear 
River was again disconnected from Bear Lake.
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